

Involvement of a Binuclear Species with the Re–C(O)O–Re Moiety in CO₂ Reduction Catalyzed by Tricarbonyl Rhenium(I) Complexes with Diimine Ligands: Strikingly Slow Formation of the Re-Re and Re-C(O)O-Re Species from $Re(dmb)(CO)_3S$ (dmb = 4,4'-Dimethyl-2,2'-bipyridine, S = Solvent)

Yukiko Hayashi, Shouichi Kita,[†] Bruce S. Brunschwig,[‡] and Etsuko Fujita*

Contribution from the Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973-5000

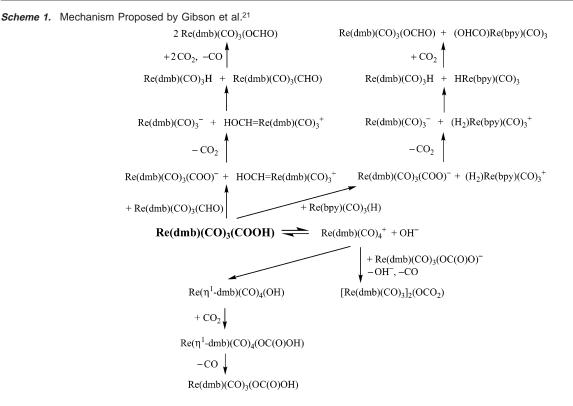
Received May 5, 2003; E-mail: fujita@bnl.gov

Abstract: Excited-state properties of fac-[Re(dmb)(CO)₃(CH₃CN)]PF₆, [Re(dmb)(CO)₃]₂ (where dmb = 4,4'dimethyl-2,2'-bipyridine), and other tricarbonyl rhenium(I) complexes were investigated by transient FTIR and UV-vis spectroscopy in CH₃CN or THF. The one-electron reduced monomer, Re(dmb)(CO)₃S (S = CH₃CN or THF), can be prepared either by reductive quenching of the excited states of *fac*-[Re(dmb)-(CO)₃(CH₃CN)]PF₆ or by homolysis of [Re(dmb)(CO)₃]₂. In the reduced monomer's ground state, the odd electron resides on the dmb ligand rather than on the metal center. Re(dmb)(CO)₃S dimerizes slowly in THF, $k_d = 40 \pm 5 \text{ M}^{-1} \text{ s}^{-1}$. This rate constant is much smaller than those of other organometallic radicals which are typically 10⁹ M⁻¹ s⁻¹. The slower rate suggests that the equilibrium between the ligand-centered and metal-centered radicals is very unfavorable ($K \approx 10^{-4}$). The reaction of Re(dmb)(CO)₃S with CO₂ is slow and competes with the dimerization. Photolysis of [Re(dmb)(CO)₃]₂ in the presence of CO₂ produces CO with a 25-50% yield based on [Re]. A CO₂ bridged dimer, (CO)₃(dmb)Re-CO(O)-Re(dmb)(CO)₃ is identified as an intermediate. Both [Re(dmb)(CO)₃]₂(OCO₂) and Re(dmb)(CO)₃(OC(O)OH) are detected as oxidation products; however, the previously reported formato-rhenium species is not detected.

Introduction

Photochemical conversion of CO₂ to fuels or useful chemicals using renewable solar energy can contribute to solutions to both the world's needs for fuels and the reduction of greenhouse gases.^{1–3} Rhenium(I) diimine complexes have been shown to act as photocatalysts⁴⁻¹² and/or electrocatalysts¹³⁻²⁰ for CO₂

- Sutin, N.; Creutz, C.; Fujita, E. Comments Inorg. Chem. 1997, 19, 67–92.
 Fujita, E.; Brunschwig, B. S. In Catalysis of Electron Transfer, Hetero-geneous and Gas-Phase Systems; Fukuzumi, S., Mallouk, T. E., Haas, Y., Eds.; Wiley-VCH: Weinheim, Germany, 2001; Vol. 4, pp 88-126
- (3) Halmann, M. M.; Steinberg, M. Greenhouse Gas Carbon Dioxide Mitigation, Science and Technology; Lewis Publisher: Boca Raton, FL, 1999.
- (4) Hawecker, J.; Lehn, J.-M.; Ziessel, R. J. Chem. Soc., Chem. Commun. 1983, 536 - 538
- (5) Hawecker, J.; Lehn, J.-M.; Ziessel, R. Helv. Chim. Acta 1986, 69, 1990-
- (6) Kutal, C.; Weber, M. A.; Ferraudi, G.; Geiger, D. Organometallics 1985, *4*, 2161–2166. (7) Kutal, C.; Corbin, A. J.; Ferraudi, G. *Organometallics* **1987**, *6*, 553–557.
- (8) Hori, H.; Johnson, F. P. A.; Koike, K.; Ishitani, O.; Ibusuki, T. J. Photochem.
- Photobiol., A 1996, 96, 171-174. Hori, H.; Johnson, F. P. A.; Koike, K.; Takeuchi, K.; Ibusuki, T.; Ishitani,
- O. J. Chem. Soc., Dalton Trans. 1997, 1019–1023. (10) Koike, K.; Hori, H.; Ishizuka, M.; Westwell, J. R.; Takeuchi, K.; Ibusuki,
- T.; Enjouji, K.; Konno, H.; Sakamoto, K.; Ishitani, O. Organometallics 1997, 16, 5724-5729.


reduction to CO. Metallocarboxylates and metallocarboxylic acids have been proposed as intermediates for CO production, 1,10,14,18,21 but neither has been observed directly in rhenium(I) catalyzed photochemical or electrochemical systems. For the electrocatalytic reduction of CO₂ to CO with $Re(bpy)(CO)_3Cl (bpy = 2,2'-bipyridine)$, Sullivan et al. proposed two pathways: one involving a one-electron-reduced complex, $Re(bpy)(CO)_3$, formed by a loss of the Cl⁻ ligand and another involving a two-electron-reduced complex, $[Re(bpy)(CO)_3]^{-14}$. Johnson et al. further studied the dependence of the electro-

- (11) Koike, K.; Okoshi, N.; Hori, H.; Takeuchi, K.; Ishitani, O.; Tsubaki, H.; Clark, I. P.; George, M. W.; Johnson, F. P. A.; Turner, J. J. J. Am. Chem. Soc. 2002, 124, 11448-11455.
- (12) Hori, H.; Ishihara, J.; Koike, K.; Takeuchi, K.; Ibusuki, T.; Ishitani, O. J. Photochem. Photobiol. A 1999, 120, 119-124.
- (13) Hawecker, J.; Lehn, J.-M.; Ziessel, R. J. Chem. Soc., Chem. Commun. 1984, 328 - 330
- (14) Sullivan, B. P.; Bolinger, C. M.; Conrad, D.; Vining, W. J.; Meyer, T. J. J. Chem. Soc., Chem. Common. 1985, 1414–1416.
 (15) Breikss, A. I.; Abruña, H. D. J. Electroanal. Chem. 1986, 201, 347–358.
- (15) Breikss, A. I., Abrulia, F. D. J. Electroandi. Chem. 1960, 201, 347–356.
 (16) O'Toole, T. R.; Sullivan, B. P.; Bruce, M. R.-M.; Margerum, L. D.; Murray, R. W.; Meyer, T. J. J. Electroanal. Chem. 1989, 259, 217–239.
 (17) Klein, A.; Vogler, C.; Kaim, W. Organometallics 1996, 15, 236–244.
 (18) Johnson, F. P. A.; George, M. W. W.; Hartl, F.; Turner, J. J. Organometallics 1996, 15, 3374–3387.

- (19) Sullivan, B. P.; Bruce, M. R. M.; O'Toole, T. R.; Bolinger, C. M.; Megehee, E.; Thorp, H.; Meyer, T. J. In Catalytic Activation of Carbon Dioxide; Ayers, Ŵ. M., Ed.; American Chemical Society: Washington, DC, 1988; Vol. 363, pp 52-90.
- (20) Scheiring, T.; Klein, A.; Kaim, W. J. Chem. Soc., Perkin Trans. 2 1997, 2569–2571.

[†] Current address: Department of Materials Science and Technology, Faculty of Science and Technology, Hirosaki University, Bunkyo-cho 3, Hirosaki, Aomori 036-8561, Japan.

[‡]Current address: Molecular Materials Resource Center, Beckman Institute, MC 139-74, California Institute of Technology, 1200 East California Blvd., Pasadena, CA 91125.

catalytic pathways on solvent and on the nature of the Re complex using FTIR spectroscopy.¹⁸ A one-electron-reduced species, $[\text{Re}(\text{dmb})(\text{CO})_3\text{Cl}]^-$ (dmb = 4,4'-dimethy-2,2'-bipyridine) with a monocoordinated bipyridine, is also proposed to be involved in CO₂ coordination and activation.^{4,15} However, no detailed studies have been published that identify the intermediate CO₂ complexes in these pathways. Furthermore, the published characterizations of the reduced species and some of the possible CO₂ intermediates are inconsistent or confusing.^{2,18,22,23} Gibson et al. isolated a key product Re(dmb)(CO)₃-(COOH) from reaction of $[Re(dmb)(CO)_4]OTf$ (OTf = trifluoromethanesulfonate) with aqueous KOH.24,25 They observed conversion of Re(dmb)(CO)₃(COOH) to (CO)₃(dmb)Re- $CO(O) - Re(dmb)(CO)_3$ and suggested that the main pathway involves loss of CO₂ from Re(dmb)(CO)₃(COOH) to form the hydride species, followed by its reaction with Re(dmb)(CO)3-(COOH) together with liberation of H_2 . More recently, they²¹ suggested that ionization of Re(dmb)(CO)₃COOH to form $Re(dmb)(CO)_4^+$ and OH^- or its proton transfer to highly basic species may play an important role in the photochemical reduction of CO₂ to CO and formate, as shown in Scheme 1. It is also known that $\operatorname{Re}(\operatorname{dmb})(\operatorname{CO})_4^+$ (or $\operatorname{Re}(\operatorname{bpy})(\operatorname{CO})_4^+$) starts to produce CO 2 µs after excitation with a 355 nm laser pulse and completes within 10 μ s in CH₂Cl₂.²⁶

We have studied these photochemical systems focusing on the identification of intermediates and the bond formation/ cleavage reactions between the Re center and CO₂. We have

produced the one-electron-reduced monomer (i.e., Re(dmb)- $(CO)_3S$) either by reductive quenching of the excited states of fac-[Re(dmb)(CO)₃(CH₃CN)]PF₆ or by photoinduced homolysis of [Re(dmb)(CO)₃]₂. We describe (1) the remarkably slow dimerization of Re(dmb)(CO)₃S; (2) the reaction of Re(dmb)-(CO)₃S with CO₂ to form a CO₂-bridged binuclear species (CO)₃(dmb)Re-CO(O)-Re(dmb)(CO)₃ as an intermediate in CO formation; and (3) the kinetics and mechanism of reactions involving the CO₂-bridged binuclear species.

Experimental Section

Materials. The complexes, Re(dmb)(CO)₃OTf,^{10,24} Re(dmb)-(CO)₃Cl,^{15,27} Re(bpy)(CO)₃Cl,²⁸ Re(dmb)(CO)₃(OCHO),²⁹ Re(dmb)-(CO)₃(OC(O)OH),²⁵ Re(dmb)(CO)₃H,^{25,30} (CO)₃(dmb)Re-CO(O)-Re(dmb)(CO)₃,²⁴ Re(dmb)(CO)₃COOH,²⁴ and Re(4,4'-bpy)₂(CO)₃Cl^{31,32} (4,4'-bpy = 4,4'-bipyridine), were prepared as previously described and characterized by NMR, UV-vis, and IR spectroscopy. [Re(dmb)(CO)3-(CH₃CN)]PF₆ and [Re(4,4'-bpy)₂(CO)₃(CH₃CN)]PF₆ were prepared by following the procedure for [Re(bpy)(CO)₃(CH₃CN)]PF₆.²⁸ Re(bpy)-(CO)₃(O¹³CHO) and Re(dmb)(CO)₃(O¹³CHO) were prepared from the corresponding Re-H species with ¹³CO₂.²⁹ [Re(dmb)(CO)₃]₂(OCO₂) was isolated from DMF solutions used for photochemical CO2 reduction with [Re(dmb)(CO)₃]₂ or [Re(dmb)(CO)₃]₂(CO₂): FAB-mass (positive): m/z 969 (parent + H⁺); Anal. Calcd for C₃₁H₂₄N₄O₉Re₂: C, 38.43; H, 2.50; N, 5.78. Found: C, 37.75; H, 2.46; N, 5.87%; IR (DMF or d_7 -DMF): 2011, 1899, 1871 (br) cm⁻¹ (ν_{CO}). IR (KBr): ν_{CO} at 2019, 1894, 1869, and 1853; ν_{dmb} at 1622; $\nu_0^{12}_{COO}$ at 1576, 1288, and 1269; ν_0^{13} _{COO} at 1534, 1262, and 1238 cm⁻¹. ¹H NMR (*d*₇-DMF, rt): δ 8.75-

- (27) Wrighton, M.; Morse, D. L. J. Am. Chem. Soc. 1974, 96, 998–1003.
 (28) Casper, J. P.; Meyer, T. J. J. Am. Chem. Soc. 1983, 87, 952–957.
 (29) Sullivan, B. P.; Meyer, T. J. J. Chem. Soc., Chem. Commun. 1984, 1224–
- 1245 (30) Sullivan, B. P.; Meyer, T. J. Organometallics 1986, 5, 1500-1502
- (31) Giordano, P. J.; Wrighton, M. S. J. Am. Chem. Soc. 1979, 101, 2888-2897
- (32) Gamelin, D. R.; George, M. W.; Glyn, P.; Grevels, F.-W.; Johnson, F. P. A.; Klotzbucher, W.; Morrison, S. L.; Russell, G.; Schaffner, K.; Turner, J. J. Inorg. Chem. **1994**, *33*, 3246–3250.

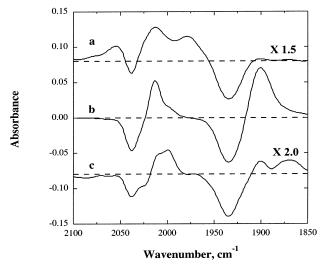
⁽²¹⁾ Gibson, D. H.; Yin, X.; He, H. Y.; Mashuta, M. S. Organometallics 2003, 22, 337 - 346

 ⁽²²⁾ Christensen, P.; Hamnett, A.; Muir, A. V. G.; Timney, J. A. *J. Chem. Soc., Dalton Trans.* 1992, 1455–1463.
 (23) Stor, G. J.; Hartl, F.; Outersterp, J. W. M. V.; Stufkens, D. J. *Organo-*

metallics 1995, 14, 1115-1131.

 ⁽²⁴⁾ Gibson, D. H.; Yin, X. J. Am. Chem. Soc. 1998, 120, 11200–11201.
 (25) Gibson, D. H.; Yin, X. J. Chem. Soc., Chem. Commun. 1999, 1411–1412.

⁽²⁶⁾ Bernhard, S.; Omberg, K. M.; Strouse, G. F.; Schoonover, J. R. Inor. Chem. 2000, 39, 3107–3110.


8.68 (4H, d, J = 5.6 Hz), 8.37–8.03 (4H, s), 7.46–7.26 (4H, d, J = 5.6 Hz), 2.42–2.10 (12H, s). The solubility of [Re(dmb)(CO)₃]₂(OCO₂) in DMF is limited, and the NMR signals shift during the solid formation. ¹³C NMR (d_7 -DMF, rt): δ 200.7, 196.9, 166.7 (OCO₂), 156.2, 152.8, 152.6, 129.2, 128.7, 21.7. While our IR results for [Re(dmb)(CO)₃]₂-(OCO₂) are not in agreement with recent published results,²¹ we confirmed our assignment by the ¹³C isotope replacement studies.

Acetonitrile (CH₃CN) and tetrahydrofuran (THF) were purified in the published manner³³ and stored under vacuum over activated molecular sieves (MS) and sodium—potassium alloy (NaK), respectively. Triethylamine (TEA) was distilled with NaK. Dimethylformamide (DMF) was distilled with CaH₂ and stored in an Ar-filled glovebox. *d*₇-DMF was used after drying over activated MS unless mentioned otherwise. Research grade CO₂ (CO₂ > 99.998%) was used without further purification. ¹³CO₂ was dried over P₂O₅ and purified by freeze—thaw cycles to remove other gaseous impurities.

Preparation of Reduced Re(dmb)(CO)₃X by Na-Hg or Na **Mirror.** Solutions of the reduced species (0.04-3 mM) were prepared under vacuum by either sodium amalgam (Na-Hg, 0.5% Na in Hg) in CH₃CN or Na mirror reduction in THF in sealed glassware equipped with an optical cell and/or an NMR tube. After removing the chamber containing Na-Hg or Na mirror by flame seal, we introduced 1 atm of CO₂ into the cell. For NMR measurements of [Re(dmb)(CO)₃]⁻, the NMR tube was flame-sealed after the UV-vis spectrum was measured using a 0.1 mm optical cell. Dark solid [Re(dmb)(CO)₃]₂ was prepared from a THF solution containing Re(dmb)(CO)₃OTf by Na-Hg reduction. The solids were collected, washed with THF, and stored in an argon-filled glovebox. Since [Re(dmb)(CO)₃]₂ and all other reduced species are air- and moisture-sensitive, the solutions for physical measurements were prepared with great care using very dry solvents. The DMF solutions containing [Re(dmb)(CO)₃]₂ were prepared in a glovebox, and all other solutions were prepared using a vacuum line.

Spectroscopic Measurements. UV-vis spectra were measured on a Hewlett-Packard 8452A diode array spectrophotometer. FTIR spectra were measured on a Mattson Polaris FT-IR spectrometer or a Bruker IFS 66/s spectrometer. NMR spectra were measured on a Bruker UltraShield 400 MHz spectrometer. Transient UV-vis absorption spectra and lifetimes of various intermediates were measured using a modified apparatus described elsewhere.34,35 Excitation was provided by the third (355 nm, ~6 ns) or second harmonic (532 nm, ~6 ns) of a Continuum Surelite-1 Nd:YAG laser. Flash photolysis experiments of [Re(dmb)(CO)₃]₂ in THF were performed at 15 °C under vacuum or with 1 atm of CO. All CW experiments were performed at 25 °C under vacuum or with 1 atm of Ar or CO2. The kinetics of the signalaveraged data were analyzed using Levenberg-Marquardt nonlinear least-squares routines written in MATLAB. Transient FTIR spectra of Re complexes were measured using a Bruker IFS 66/s spectrometer with a Kolmar HgCdTe detector and a flow cell (1.0-2.8 mm path length) for step scan (time resolution: 10 ns) or with a Graseby infrared photoconductive HgCdTe detector and a 0.1-0.5 mm path length vacuum tight cell for rapid scan. Acetonitrile solutions containing 1-2 mM Re complex with or without 1 M TEA were bubbled by Ar or CO2 for at least 10 min before measurements. The sample was excited with the third harmonic (355 nm, 6 ns) of a Continuum Surelite-1 Nd:YAG laser. The excitation energy was typically 20 mJ cm⁻² per pulse.

Continuous Photolysis. Solutions were prepared under either vacuum or 1 atm of Ar or CO_2 and irradiated using light from a 150 W xenon lamp with a 380 nm LP filter. Gaseous products, CO and H_2 ,

Figure 1. Transient FTIR (difference) spectra of the CH₃CN solution containing [Re(dmb)(CO)₃(CH₃CN)]PF₆: (a) the excited-state spectrum under Ar; (b) the photoformed singly reduced species with TEA under Ar; (c) the photoformed one-electron-reduced species with TEA under CO₂.

were determined on a Varian Model 3700 gas chromatograph equipped with a thermal conductivity detector and a molecular sieve 5A column at 60 °C using He and Ar, respectively, as carrier gases. The other products were analyzed by NMR, FTIR, elemental analysis and/or FABmass.

Electrochemistry. Cyclic voltammograms were obtained using a BAS100 electrochemical system with scan rates of 100 mV s⁻¹. The solutions used contained 1 mM rhenium complex and 0.1 M tetrabutylammonium hexafluorophosphate in CH₃CN. Glassy carbon, Pt, and SCE were used as working, counter, and reference electrodes, respectively, in a conventional H-type cell. Ferrocene was used as an internal standard (Fc/Fc⁺ 0.39 V vs SCE). The electrochemical behavior of Re(diimine)(CO)₃X in the positive region shows one wave; however, in the negative region it shows several reduction waves as previously found.

Results and Discussion

FTIR Studies of Excited States. The transient FTIR spectrum of [Re(dmb)(CO)₃(CH₃CN)](PF₆) in CH₃CN at room temperature following 355 nm laser excitation is shown in Figure 1a. Excitation of [Re(dmb)(CO)₃(CH₃CN)](PF₆) produces the ³MLCT excited states (to be denoted with an asterisk): The CO stretching bands of *[Re(dmb)(CO)₃(CH₃CN)]⁺ grow (2062, 2013, and 1979 cm⁻¹), and so do those of the ground-state bleach (2039 and 1934 cm⁻¹). Ground- and excited-state ν_{CO} frequencies for $Re(bpy)(CO)_3Cl$ (bpy = 2,2'-bipyridine), [Re(bpy)(CO)₃(CH₃CN)](PF₆), Re(4,4'-bpy)₂(CO)₃Cl (4,4'-bpy = 4,4'-bipyridine), [Re(4,4'-bpy)₂(CO)₃(CH₃CN)](PF₆), Re(dmb)-(CO)₃Cl, and [Re(dmb)(CO)₃(CH₃CN)](PF₆) species are listed in Table 1. Assignments of ν_{CO} frequencies were made as described previously.³⁶ The overlapping E mode bands in the ground states of the acetonitrile complexes are resolved into separate A'(2) and A'' bands in the excited states. Upon excitation, three ν_{CO} bands show a 20–90 cm⁻¹ shift to higher energy with A'(2) modes having the largest ν_{CO} shift for all complexes studied. In the ³MLCT excited state, charge has

⁽³³⁾ Riddick, J. A.; Bunger, W. B.; Sakano, T. K. Organic Solvents, Physical Properties and Methods of Purification, 4th ed.; Wiley: New York, 1986.

⁽³⁴⁾ Hamada, T.; Brunschwig, B. S.; Eifuku, E.; Fujita, E.; Korner, M.; Sasaki, S.; van Eldik, R.; Wishart, J. F. J. Phys. Chem. A **1999**, 103, 5645– 5654.

⁽³⁶⁾ Dattelbaum, D. M.; Omberg, K. M.; Schoonover, J. R.; Martin, R. L.; Meyer, T. J. Inorg. Chem. 2002, 41, 6071–6079.

Table 1. v_{CO} Frequencies (cm⁻¹) of Ground-State (v_{CO}(gs)), Excited-State (v_{CO}(ex)), and Photochemically Produced Reduced Species $(\nu_{CO}(red))$ for Rhenium Complexes in CH₃CN at 298 K

		$\nu_{\rm CO}(\rm gs)$		$\nu_{\rm CO}({\rm ex})$			$ u_{\rm CO}({\rm red})$			
complex	electron donor	A'(1) or A ₁	A'(2) or E	Α″	A'(1)	A'(2)	Α″	A'(1) or A ₁	A'(2) or E	Α″
Re(bpy)(CO) ₃ Cl	TEA	2023	1914	1902	2068	1989	1957	1998	1880	1866
$[\text{Re(bpy)(CO)}_3(\text{CH}_3\text{CN})]^+$	TEA	2040	1937(br)		2070	2017	1987	2017	1902(br)	
	PTZ	2040	1937(br)					2015	1904(br)	
$Re(4,4'-bpy)_2(CO)_3Cl$	PTZ	2026	1919	1893	2065	1993	1961	2017	1908	1879
$[\text{Re}(4,4'-\text{bpy})_2(\text{CO})_3(\text{CH}_3\text{CN})]^+$	PTZ	2046	1942(br)		2068	2031	1992	2015	1904(br)	1879
Re(dmb)(CO) ₃ Cl		2021	1914	1898	2062	1989	1953			
$[\text{Re}(\text{dmb})(\text{CO})_3(\text{CH}_3\text{CN})]^+$	TEA	2039	1934(br)		2062	2013	1979	2012	1904(br)	

transferred from the Re center to the diimine ligand. The decreased charge density on the Re center reduces the π -backbonding between the Re center and the CO ligands. This in turn increases the CO bond strength and vibration frequencies. Similar effects have been observed in time-resolved resonance Raman spectroscopy studies of similar complexes.³⁷ The ν_{CO} values for *Re(bpy)(CO)₃Cl and *Re(4,4'-bpy)₂(CO)₃Cl are consistent with those reported previously in CH₂Cl₂.^{32,38-40} The lifetimes of *Re(4,4'-bpy)2(CO)3Cl and *Re(bpy)(CO)3Cl observed in our FTIR experiments are 400 ns and 30 ns, respectively, in CH₃CN and are consistent with those obtained by emission measurements at 25 °C.31,41

Transient FTIR Studies of One-Electron-Reduced Species. The ³MLCT excited state of Re(diimine)(CO)₃X is known to be both a strong oxidant and a strong reductant,^{41,42} and it can be quenched by either electron acceptors or donors. In our experiments, *Re(bpy)(CO)₃Cl reacts with electron donors such as triethylamine (TEA) to produce the one-electron-reduced species [Re(bpy)(CO)₃Cl]⁻ (ν_{CO} : 1998, 1880, 1866 cm⁻¹) in CH₃CN as shown in eqs 1 and 2 and in Table 1. [Re(bpy)-(CO)₃Cl]⁻ has been assigned as a ligand radical with the "added" electron, primarily residing in the bpy- π^* -orbital.^{17,20,43} This increases the charge density on the Re(I) center, since bpy⁻ is both a more powerful σ -donor and a poorer π -acceptor (it will not back-bond as well with the Re center). This in turn increases the Re–CO π -back-bonding and the electron density in the π^* orbital of the CO. This decreases the CO bond strength and shifts $v_{\rm CO}$ to lower energy by ~30 cm⁻¹. Further, the UV-vis spectra of the one-electron-reduced species [Re(bpy)(CO)₃Cl]⁻ shows two bands at 486 and 512 nm (in THF) that are similar to the bpy⁻ spectra seen in *Re(bpy)(CO)₃Br.⁴⁴ Alternatively, if the added electron were located on the Re center, yielding a Re(0) center that is much more electron rich, one might expect a shift of ν_{CO} to lower energy that is larger than that observed on going from excited (Re^{II}bpy⁻) to the ground (Re^Ibpy) state of Re(bpy)(CO)₃Cl (~ 60 cm⁻¹). This assignment is also supported by density functional theory (DFT) calculations that will be published separately.45

- J. J. J. Chem. Soc., Dalton Trans. 1993, 2977-2979.
- (39) George, M. W.; Turner, J. J. Coord. Chem. Rev. 1998, 177, 201–217.
 (40) Glyn, P.; George, M. W.; Hodges, P. M.; Turner, J. J. J. Chem. Soc. Chem. Commun. 1989, 1655–1657.
- (41) Kalyanasundaram, K. J. Chem. Soc., Faraday Trans. 1986, 82, 2401-2415.
- (42) Luong, J. C.; Nadjo, L.; Wrighton, M. S. J. Am. Chem. Soc. 1978, 100, 5790-5795.
- (43) Kaim, W.; Kohlmann, S. Chem. Phys. Lett. 1987, 139, 365-369.
- (44) Rossenaar, B. D.; Stufkens, D. J.; Vlcek, A. Inorg. Chim. Acta 1996, 247, 247-255.

The transient FTIR spectra show that $[Re(bpy)(CO)_3Cl]^-$ lives longer than 10 ms ($k < 10^2 \text{ s}^{-1}$), thus loss of Cl⁻ is slow (eq 3a or 3b) as found previously.^{18,38} The transient FTIR spectrum of [Re(bpy)(CO)₃Cl]⁻ is identical under Ar and CO₂ indicating that CO_2 does not react with $[Re(bpy)(CO)_3Cl]^-$ on this time scale.

> $\operatorname{Re}(\operatorname{bpy})(\operatorname{CO})_{3}\operatorname{Cl} + h\nu \rightarrow \operatorname{*Re}(\operatorname{bpy})(\operatorname{CO})_{3}\operatorname{Cl}$ (1)

*Re(bpy)(CO)₃Cl + TEA
$$\rightarrow$$
 [Re(bpy)(CO)₃Cl]⁻ + TEA⁺
(2)

$$[\operatorname{Re}(\operatorname{bpy})(\operatorname{CO})_3\operatorname{Cl}]^- \to \operatorname{Re}(\operatorname{bpy})(\operatorname{CO})_3 + \operatorname{Cl}^- \quad (3a)$$

 $[\text{Re(bpy)(CO)}_3\text{Cl}]^- + \text{S} \rightarrow \text{Re(bpy)(CO)}_3\text{S} + \text{Cl}^-$ (3b)

The results of transient FTIR spectra of other rhenium species in CH₃CN are shown in Table 1. Phenothiazine (PTZ) was also used as a reversible one-electron donor. The stability of the reduced complex depends on the ability of the X ligand (X =Cl, Br, H, etc.) and the diimine ligand to accommodate the increased electron density of the Re center.¹⁸ For ligands that cannot accept charge density into a low energy orbital, the Re-X bond is weakened. This can lead to loss of X⁻. Johnson et al. concluded that complexes such as Re(dmb)(CO)₃X tend to form the five-coordinate Re(dmb)(CO)₃ species upon oneelectron reduction even in CH₃CN, since dmb is a more basic ligand than bpy.¹⁸

$$[\operatorname{Re}(\operatorname{dmb})(\operatorname{CO})_{3}(\operatorname{CH}_{3}\operatorname{CN})]^{+} + h\nu \rightarrow \\ *[\operatorname{Re}(\operatorname{dmb})(\operatorname{CO})_{3}(\operatorname{CH}_{3}\operatorname{CN})]^{+} + \operatorname{TEA} \rightarrow$$

 $Re(dmb)(CO)_3(CH_3CN) + TEA^+$ (5)

Therefore, we quenched the excited state of [Re(dmb)(CO)₃-(CH₃CN)]⁺ with TEA (eqs 4 and 5) in order to create a vacant site for CO₂ coordination. The species produced, which lives longer than 10 ms, has $\nu_{\rm CO}$ at 2012 and 1904 (br) cm⁻¹ (Figure 1b and Table 1). We propose that this species is a six-coordinate $Re(dmb)(CO)_3S$ (S = solvent) species and not the fivecoordinate Re(dmb)(CO)₃ species assigned by Johnson et al.¹⁸

⁽³⁷⁾ Stufken, D. J.; Vlcek, A. J. Coord. Chem. Rev. 1998, 177, 127-179. (38) George, M. W.; Johnson, F. P. A.; Westwell, J. R.; Hodges, P. M.; Turner,

⁽⁴⁵⁾ We have carried out DFT and fully ab initio calculations on Re(bpy)(CO)₃, [Re(bpy)(CO)₃Cl]⁻, and Re(bpy)(CO)₃(THF). The unpaired electron in the HOMO of Re(bpy)(CO)₃ is partially delocalized onto the bpy π system, but it is available for bonding to reform the dimer. In [Re(bpy)(CO)₃Cl]⁻ and Re(bpy)(CO)₃(THF), the unpaired electron is shifted completely onto the bpy π system. The binding energies of Cl⁻ and THF are 22 and 18 kcal/mol, respectively, and these six-coordinate $18 e^{-1}$ ligand radical species are more stable than the five-coordinate "17 e⁻" species. Detailed results will be published in a forthcoming paper (in preparation with J. T. Muckerman, BNL).

A five-coordinate Re(dmb)(CO)₃ species would be either a 16e⁻ species with an unpaired electron located on the dmb ligand or a 17e⁻ species with an unpaired electron located on the metal. According to our recent DFT calculations, Re(bpy)(CO)₃(THF), which is an 18e⁻ species with an unpaired electron on bpy, is more stable than the five-coordinate Re(bpy)(CO)₃ species.⁴⁵ In fact, the CO stretching frequencies and the maxima of the UV-vis spectra of Re(dmb)(CO)₃S are remarkably solvent dependent, consistent with the solvent coordination. v_{CO} (cm⁻¹) 2007, 1897 (br) in THF;46 2012, 1904 (br) in CH₃CN; 2016, 1910 (br) in DMF. λ_{max} (nm) 356, 467, 496 in THF; 400, 482, 508 in CH₃CN; 490, 520 in DMF. Furthermore, the UV-vis spectra of Re(dmb)(CO)₃(CH₃CN) and [Re(dmb)(CO)₃Cl]⁻ (which has been considered as a ligand radical^{17,20,43}) in CH₃CN are very similar except for small shifts of absorption maxima. λ_{max} for [Re(dmb)(CO)₃Cl]⁻ 486, 512 nm.

The [Re(dmb)(CO)₃(CH₃CN)]⁺ ground state reacts slowly with TEA to form [Re(dmb)(CO)₃(TEA)]⁺ (ν_{CO} 2011, 1900 (br) cm⁻¹) in CH₃CN in the dark. Further transient FTIR spectra (not shown) of a solution of [Re(dmb)(CO)₃(CH₃CN)]⁺ containing TEA that was aged 2 h before laser excitation indicates shoulders around 2000 and 1870 cm⁻¹, which can be attributed to Re(dmb)(CO)₃(TEA), in addition to ν_{CO} at 2012 and 1904 cm⁻¹ for Re(dmb)(CO)₃(CH₃CN). Such an amine adduct, [Re(bpy)(CO)₃(TEOA)]⁺ (TEOA = triethanol amine), has been detected in photochemical CO₂ reduction.⁹

In transient FTIR experiments under CO₂ (CH₃CN, 1 M TEA), we observed the formation of Re(dmb)(CO)₃(CH₃CN) $(\nu_{\rm CO} \text{ at } 2012 \text{ and } 1904 \text{ cm}^{-1})$ and another component $(\nu_{\rm CO} \text{ at } 1000 \text{ cm}^{-1})$ 2000 and 1868 cm⁻¹), together with loss of $[Re(dmb)(CO)_3 (CH_3CN)$]⁺ and a species which has ν_{CO} at 2022 cm⁻¹, shown in Figure 1c. All signals due to the products (shown as peaks in Figure 1c) remain unchanged for 10 ms. These additional peaks, very similar to those of [Re(dmb)(CO)₃(TEA)]⁺ and Re(dmb)(CO)₃(TEA), were always observed, even when the solution was prepared just before excitation under CO2. Signal intensities of Re(dmb)(CO)₃(CH₃CN) under CO₂ are weaker than those under Ar. This is due to formation and precipitation of Re(dmb)(CO)₃(OC(O)OH) during the transient FTIR experiments. Carbonyl stretching frequencies of Re(dmb)(CO)₃-(OC(O)OH) and $[Re(dmb)(CO)_3(TEA)]^+$ are very similar in DMF, as are those of [Re(dmb)(CO)₃(OC(O)OH)]⁻ and Re(dmb)-(CO)₃(TEA). Small amounts of water in the presence of TEA and CO₂ produce OC(O)OH⁻ ions (eq 6), and Re(dmb)(CO)₃-(OC(O)OH) is formed by reaction of [Re(dmb)(CO)₃(CH₃CN)]⁺ and bicarbonate.

$$\mathrm{Et}_{3}\mathrm{N} + \mathrm{H}_{2}\mathrm{O} + \mathrm{CO}_{2} \rightarrow \mathrm{Et}_{3}\mathrm{NH}^{+} + \mathrm{HCO}_{3}^{-} \qquad (6)$$

 $\frac{\text{Re(dmb)(CO)}_3(\text{CH}_3\text{CN}) + \text{CO}_2 \rightarrow}{\text{Re(dmb)(CO)}_3(\text{CO}_2) + \text{CH}_3\text{CN}}$ (7a)

$$Re(dmb)(CO)_{3}(CH_{3}CN) + CO_{2} + H^{+} + e^{-} \rightarrow Re(dmb)(CO)_{3}(CO_{2}H) + CH_{3}CN$$
(7b)

Therefore, the shoulder at 2022 cm⁻¹ is assigned for Re(dmb)-(CO)₃(OC(O)OH). The stretching frequencies at 2000 and 1868 cm⁻¹ (Figure 1c) are attributed to [Re(dmb)(CO)₃(OC(O)OH)]⁻.

The IR spectrum of an authentic sample of $\text{Re}(\text{dmb})(\text{CO})_3$ -(OC(O)OH) prepared using the published procedure²⁵ is in good agreement with our spectrum. Since the stretching frequencies for $\text{Re}(\text{dmb})(\text{CO})_3(\text{CH}_3\text{CN})$ remain almost unchanged for 10 ms under CO₂, the reaction with CO₂ is slow or unfavorable. Thus, reactions with CO₂ shown in eqs 7a and 7b were not observed in our transient FTIR experiments.

Similar results were obtained with $[Re(bpy)(CO)_3(CH_3CN)]^+$ (ν_{CO} at 2040 and 1937 cm⁻¹): Re(bpy)(CO)_3(CH_3CN) (ν_{CO} at 2017 and 1902 cm⁻¹) with formation of $[Re(bpy)(CO)_3-(OC(O)OH)]^-$ (ν_{CO} at 1988 and 1870 cm⁻¹) as a side product. We isolated solids during transient FTIR measurements using $^{12}CO_2$ and $^{13}CO_2$ with $[Re(bpy)(CO)_3(CH_3CN)]^+$ and confirmed that they are bicarbonate species: IR (KBr) 2021.9, 1895.0, 1617.9 (1578.8), 1602 sh, 1471.5, 1442.9 sh, 1425.3 (1398.8), 1361.2 (1346.5), 1316.3, 1245.4, 1158.6 cm⁻¹. The numbers in parentheses indicate IR shifts due to ^{13}C labeling of the bound OC(O)OH. ^{13}C was not incorporated into the bound CO.

Properties of Reduced Re(dmb)(CO)₃(OTf) Species. Thermal formation of rhenium-bicarbonate species makes it difficult to observe any CO₂-containing intermediates in solutions containing [Re(diimine)(CO)₃(CH₃CN)]⁺, TEA, and CO₂ as discussed above. To avoid complications such as formation of $Re(dmb)(CO)_3(OC(O)OH)$ under CO_2 , we generated the oneand two-electron-reduced species of Re(dmb)(CO)₃(OTf) by Na-Hg reduction in dry solvents. Since the reported reduction potentials for a series of Re complexes have been measured using different solvents, reference electrodes, working electrodes, and scan rates, we reexamined their reduction potentials (vs SCE) using a glassy carbon electrode in CH₃CN solutions containing 0.1 M Bu₄NPF₆ at a scan rate of 100 mV s⁻¹. Before and after each measurement, ferrocene was measured as a standard (0.39 V vs SCE). The results are summarized in Table S1 (Supporting Information). Upon Na-Hg reduction of a yellow THF solution containing Re(dmb)(CO)₃(OTf), formation of the reddish-purple ligand radical species, Re(dmb)(CO)3-(THF), with characteristic bands at 356, 467, and 496 nm, was observed. However, within 1 h, Re(dmb)(CO)₃(THF) converts thermally to a species which has bands at 480, 620, and 818 nm. This change from a reddish-purple solution to a blue-green solution is due to the dimerization of Re(dmb)(CO)₃(THF) (eq 8). The dimerization has been observed previously in the electrochemical reduction of Re(dmb)(CO)₃Cl.^{15,22}

 $2\text{Re}(\text{dmb})(\text{CO})_3(\text{THF}) \rightarrow [\text{Re}(\text{dmb})(\text{CO})_3]_2 + 2\text{THF}$ (8)

Further reduction of $[\text{Re}(\text{dmb})(\text{CO})_3]_2$ produces the fivecoordinate $[\text{Re}(\text{dmb})(\text{CO})_3]^-$ species⁴⁷ which has an absorption maximum at 582 nm, similar to $[\text{Re}(\text{bpy})(\text{CO})_3]^-$ reported previously.²³ Similar spectral changes from $\text{Re}(\text{dmb})(\text{CO})_3(\text{OTf})$ to $[\text{Re}(\text{dmb})(\text{CO})_3]^-$ were observed in CH₃CN. The twoelectron-reduced species $[\text{Re}(\text{bpy})(\text{CO})_3]^-$ and $[\text{Re}(\text{dmb})(\text{CO})_3]^$ are quite stable in very dry air-free solvents, especially in THF, despite reports to the contrary.⁴⁸ No decomposition of $[\text{Re}(\text{dmb})(\text{CO})_3]^-$ in THF was observed overnight. The

⁽⁴⁶⁾ Unpublished data (K. Shinozaki, Yokohama City University, Japan).

⁽⁴⁷⁾ Our DFT calculations reveal that [Re(bpy)(CO)₃(THF)][−] is unstable and spontaneously dissociates to the five-coordinate [Re(bpy)(CO)₃][−]. The detailed results will be published in a forthcoming paper (with J. T. Muckerman, BNL).

 ⁽⁴⁸⁾ O'Toole, T. R.; Younathan, J. N.; Sullivan, B. P.; Meyer, T. J. Inorg. Chem. 1989, 28, 3923–3926.

Table 2. Spectroscopic Properties of Re(dmb))(CO)₃(OTf) and the Reduced Species at 25 °C

spectroscopy	complexes	solvent	
UV-vis ^a	Re(dmb)(CO) ₃ (OTf)	THF	248 (17.0), 306 (11.6), 318 (11.5), 346 (4.4)
	Re(dmb)(CO) ₃ S	THF	356, 467, 496
		CH ₃ CN	400, 482, 508
		DMF	490, 520
	$[\text{Re}(\text{dmb})(\text{CO})_3]_2$	THF	480 (8.1), 520sh (7.2), 620 (5.6), 818 (17.6)
		CH ₃ CN	438 (7.7), 598 (7.8), 780 (6.8)
		acetone	454, 606, 798
	$[\text{Re}(\text{dmb})(\text{CO})_3]^-$	THF	282 (24.5), 378sh (8.8), 582 (13.1)
		CH ₃ CN	582 (10.2)
IR^b	Re(dmb)(CO) ₃ (OTf)	THF	2032, 1932, 1908
		DMF	2028, 1915(br)
	Re(dmb)(CO) ₃ S	THF^{c}	2007, 1897(br)
		CH ₃ CN	2012, 1904(br)
	$[\text{Re}(\text{dmb})(\text{CO})_3]_2$	THF	1976, 1947, 1877, 1855
		DMF	1978, 1942, 1879, 1840
		CH ₃ CN	1982, 1943, 1876, 1843
	$[\text{Re}(\text{dmb})(\text{CO})_3]^-$	THF	1940, 1832
		CH ₃ CN	1943, 1828
NMR^d	Re(dmb)(CO) ₃ (OTf)	THF	8.93(d), 8.39(s), 7.54(d), 2.58(s)
		DMF	9.07(d), 8.39(s), 7.79(d), 2.65(s)
	$[\text{Re}(\text{dmb})(\text{CO})_3]_2$	DMF	8.25(s), 7.96(d), 7.05(d), 2.61(s)
	$[\text{Re}(\text{dmb})(\text{CO})_3]^-$	THF	8.87(d), 7.08(s), 5.18(d), 2.07(s)

^aλ_{max}, nm, (ε, mM⁻¹ cm⁻¹). ^bν_{CO}, cm⁻¹. ^c Unpublished data (K. Shinozaki). ^d Chemical shift, ppm

Table 3.	Spectroscopic	Properties of C	C-Containing	Products from th	e Reaction	of Re(dmb)(CO)a	with CO ₂ or	Other Reactions at 25 °C
----------	---------------	-----------------	--------------	------------------	------------	-----------------	-------------------------	--------------------------

spectroscopy	complexes	solvent	
UV-vis ^a	Re(dmb)(CO) ₃ (COOH)	DMF	290sh (13.9), 316sh (6.6), 374(3.1)
	Re(dmb)(CO) ₃ (OCHO)	DMF	288 (12.8), 316sh (8.5), 360 (3.4)
	$[\text{Re}(\text{dmb})(\text{CO})_3]_2(\text{CO}_2)$	DMF	290 (25.2), 362 (4.4), 460 (2.5)
	Re(dmb)(CO) ₃ (OC(O)OH)	DMF	288(11.3), 316 (7.1), 360 (2.8)
IR^b	Re(dmb)(CO) ₃ (COOH)	DMF	2005, 1895
		KBr	2008, 1886, 1620(v _{dmb}), 1592(v _{COOH}), 1194(v _{COOH}),
	Re(dmb)(CO) ₃ (OCHO)	DMF	2017, 1911, 1888
	$[\text{Re}(\text{dmb})(\text{CO})_3]_2(\text{CO}_2)$	DMF	2002, 1989, 1896, 1867
		KBr	2000, 1993, 1889, 1869, 1620(ν_{dmb}), 1486(ν_{COO}), 1176(ν_{COO})
	$[Re(dmb)(CO)_3]_2(O^{12}CO_2)$	DMF	2011, 1899, 1871
		KBr	2019, 1894, 1869, 1853, 1621(ν_{dmb}), 1576(ν_{OCO2}), 1288(ν_{OCO2}), 1269(ν_{OCO2})
	$[Re(dmb)(CO)_3]_2(O^{13}CO_2)$	KBr	2019, 1894, 1869, 1853, 1621(ν_{dmb}), 1534(ν_{OCO2}), 1262(ν_{OCO2}), 1238(ν_{OCO2})
	$Re(dmb)(CO)_3(O^{12}C(O)OH)$	DMF	2017, 1912, 1886
		KBr	2020, 1905, 1869, 1620(ν_{dmb}), 1620(ν_{OCOO}), 1416(ν_{OCOO}), 1353(ν_{OCOO})
	$Re(dmb)(CO)_3(O^{13}C(O)OH)$	KBr	2020, 1905, 1869, 1620(ν_{dmb}), 1584(ν_{OCOO}), 1384(ν_{OCOO}), 1331(ν_{OCOO})
	Re(dmb)(CO) ₃ Cl	DMF	2018, 1911, 1890, $1623(\nu_{dmb})$
	$Re(bpy)(CO)_3(O^{12}C(O)OH)$	KBr	2020, 1895(br), 1605(ν_{bpy}), 1617(ν_{OCOO}), 1425(ν_{OCOO}), 1361(ν_{OCOO})
	$Re(bpy)(CO)_3(O^{13}C(O)OH)$	KBr	2020, 1895(br), 1605(ν_{bpy}), 1579(ν_{OCOO}), 1399(ν_{OCOO}), 1346(ν_{OCOO})
	Re(bpy)(CO) ₃ Cl	DMF	2021, 1892(br), 1602($\nu_{\rm bpy}$)
¹³ C NMR	Re(dmb)(CO) ₃ (OCHO)	DMF	199.6, 195.8, 167.0(HOCO)
	$[\text{Re}(\text{dmb})(\text{CO})_3]_2(\text{CO}_2)$	DMF	212.2(CO ₂), 203.7, 202.3, 200.7, 196.5
	$[\text{Re}(\text{dmb})(\text{CO})_3]_2(\text{OCO}_2)$	DMF	200.7, 196.8, <i>166.7</i> (OCO ₂)
	Re(dmb)(CO) ₃ (OC(O)OH)	DMF	199.7, 196.0, <i>160.4</i> (OCOOH)
¹ H NMR ^c	Re(dmb)(CO) ₃ (COOH)	DMF	9.07(bs, COOH), 8.93 (d), 8.67 (s), 7.56 (d), 2.59 (s)
		THF	8.93(d), 8.39(s), 7.54(d), 2.58(s)
	Re(dmb)(CO) ₃ (OCHO)	DMF	9.00(d), 8.72(s), 7.88(s, OCHO), 7.67(d), 2.62(s)
	$[\text{Re}(\text{dmb})(\text{CO})_3]_2(\text{CO}_2)$	DMF	8.62(d), 8.49(d), 8.47(s), 8.27(s), 7.42(d), 7.26(d), 2.66(s), 2.59(s)
	$[Re(dmb)(CO)_3]_2(OCO_2)$	DMF	8.75-8.68(d), 8.37-8.03(s), 7.46-7.26(d), 2.42-2.10(s)
	Re(dmb)(CO) ₃ (OC(O)OH)	DMF	9.21(bs, OC(O)OH), 8.99(d), 8.69(s), 7.66(d), 2.60(s)

 $^{a}\lambda_{max}$, nm (ϵ , mM⁻¹ cm⁻¹). $^{b}\nu_{CO}$ unless mentioned, cm⁻¹. c Chemical shift, ppm.

UV-vis spectra of Re(dmb)(CO)₃(OTf), [Re(dmb)(CO)₃]₂, and [Re(dmb)(CO)₃]⁻ are shown in Figure S1 (Supporting Information). The UV-vis, IR, and NMR data are summarized in Tables 2 and 3. Note that while UV-vis spectra of [Re(dmb)(CO)₃]₂ are solvent dependent probably due to the charge-transfer origin of the absorption, those of [Re(dmb)(CO)₃]⁻ in CH₃CN and THF are remarkably similar.

The IR spectra of Re(dmb)(CO)₃S, [Re(dmb)(CO)₃]₂, and their bpy analogues are controversial: Re(dmb)(CO)₃S 1979, 1876, and 1843 cm⁻¹ in CH₃CN by Christensen et al.;²² [Re(dmb)(CO)₃]₂ 1943 cm⁻¹ in CH₃CN by Christensen et al.;²²

 $[\text{Re}(\text{bpy})(\text{CO})_3]_2$ (KBr) 2020, 1940, and 1860 cm⁻¹ by Hawecker et al.;⁵ $[\text{Re}(\text{bpy})(\text{CO})_3]_2$ in CH₃CN 1975 cm⁻¹ by O'Toole et al.;¹⁶ $[\text{Re}(\text{bpy})(\text{CO})_3]_2$ in THF 1988, 1951, 1887, and 1859 cm⁻¹ by Stor et al.²³ We believe that all these assignments, except that of Stor et al., are probably due to contamination by oxidized or further reduced species and complicated further by the monomer/dimer equilibrium (See Table 2 for our data in THF, DMF, and CH₃CN). Note that protons for $[\text{Re}(\text{dmb})(\text{CO})_3]^-$ show a significant high field shift in their NMR spectra. Sharp methyl and C₅ proton signals of $[\text{Re}(\text{dmb})(\text{CO})_3]^-$ at 2.07 (s) and 5.18 (d) ppm, respectively,

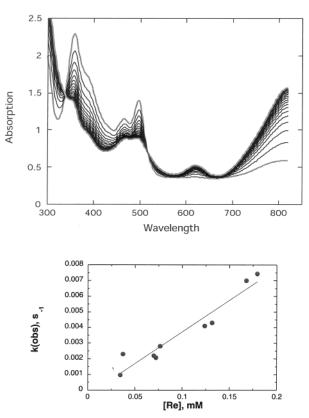
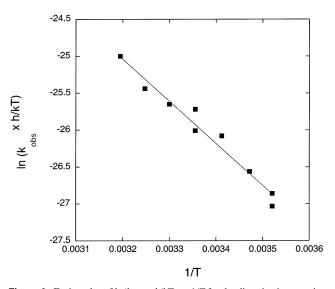



Figure 2. (Top) Dimerization of Re(dmb)(CO)₃(THF) in THF: spectral changes of a solution containing 0.10 mM [Re(dmb)(CO)₃]₂ monitored every 60 s after photolysis (>380 nm). (Bottom) Plot of observed pseudo-firstorder rate constant for dimerization of Re(dmb)(CO)₃(THF) in THF at 25 °C vs Re(dmb)(CO)₃(THF) concentration.

are strikingly shifted from those of Re(dmb)(CO)₃(OTf) at 2.58 and 7.54 ppm.

Photochemistry of [Re(dmb)(CO)₃]₂. Dark blue-green solid [Re(dmb)(CO)₃]₂ was prepared by sodium amalgam (Na-Hg) reduction of Re(dmb)(CO)₃(OTf) in THF. The UV-vis spectra show solvent dependence: λ_{max} (ϵ , M⁻¹ cm⁻¹); 480 (8100), 520sh (7200), 620 (5600), and 818 (17600) nm in THF; 454, 606, and 798 nm in acetone; 438 (7700), 598 (7800), and 780 (6800) nm in acetonitrile (Figure S2 in the Supporting Information). The spectrum in CH₃CN is consistent with those published previously.^{15,49} Polar solvents cause a shift of the visible transitions of the dimer to higher energy indicating that these absorptions can be assigned to MLCT transitions. There is no other absorption band in the near-IR region (900-1600 nm).

Upon photolysis ($\lambda > 380$ nm) of a THF solution containing 0.1 mM [Re(dmb)(CO)₃]₂, Re-Re bond homolysis takes place to form the Re(dmb)(CO)₃(THF) monomer, which is a ligand radical with characteristic absorptions at 467 and 496 nm (eq 9). The homolysis quantum yield is quite small ($\sim 10^{-5}$ at 530 nm). As shown in Figure 2 (top), the monomer reversibly reforms the dimer after photolysis at 25 °C. Formation of the dimer is surprisingly slow and is second order in [Re(dmb)-(CO)₃(THF)] with $k_d = 40 \pm 5 \text{ M}^{-1} \text{ s}^{-1}$ (eq 9) at 25 °C in THF as seen in Figure 2 (bottom). The homolysis/dimerization process for [Re(dmb)(CO)₃]₂ was also observed in CH₃CN and

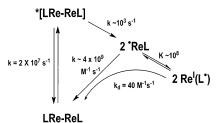
Figure 3. Erying plot of $\ln(k_{obs} \times h/kT)$ vs 1/T for the dimerization reaction of Re(dmb)(CO)₃(THF). The rate constants of the dimerization (k_{obs}) were measured at 11, 15, 20, 25, 30, 35, and 40 °C. Activation entropy (ΔH^{\ddagger} = 11 kcal mol⁻¹) and enthalpy ($\Delta S^{\ddagger} = -14$ cal mol⁻¹ deg⁻¹) are calculated from the slope and the intercept, respectively.

DMF on a similar time scale; however, it was not completely reversible. Only 1/2 to 2/3 of the original [Re(dmb)(CO)₃]₂ was recovered after homolysis. CW photolysis ($\lambda > 380$ nm) of 3 mM [Re(dmb)(CO)₃]₂ for 2 h in DMF under Ar (no added CO₂) surprisingly yields Re(dmb)(CO)₃(OC(O)OH) (~30%) with no CO generation. Re(dmb)(CO)₃(OC(O)OH) seems to form from CO₂ produced by the photodecomposition of impurities or solvent.

$$2\text{Re}(\text{dmb})(\text{CO})_3(\text{THF}) \xrightarrow{k_d}_{h\nu} [\text{Re}(\text{dmb})(\text{CO})_3]_2 + 2\text{THF} \quad (9)$$

$$k_{\rm obs} = \frac{k_{\rm B}T}{h} \exp(-\Delta H^{\ddagger}/RT) \exp(\Delta S^{\ddagger}/R)$$
(10)

Activation parameters (eq 10) for the dimerization reaction (eq 9) of Re(dmb)(CO)₃(THF) in THF are $\Delta H^{\ddagger} = 11$ kcal mol⁻¹ and $\Delta S^{\ddagger} = -14$ cal mol⁻¹ deg⁻¹ (See Figure 3). Flash photolysis studies of compounds containing the M-M bond shows that visible excitation induces homolysis of the M-M bond with formation of 17e⁻ metal radicals such as Re[•](CO)₅^{50,51} and $CpM^{\bullet}(CO)_{3}$, ^{52,53} which then dimerize to reform the parent species with a rate constant of 10⁹ M⁻¹ s⁻¹ in solvents such as cyclohexane, CH₃CN, and THF. In our case, the species formed by the homolysis is not a 17e⁻ metal radical but rather an 18e⁻ six-coordinate Re(dmb)(CO)₃(THF) with a dmb anion radical. If the dimerization reaction that we observe proceeds via a preequilibrium to the metal-centered radical, eq 11, then the unfavorable preequilibrium is the dominant barrier to the reaction. Reaction 12 proceeds rapidly due to the unstable nature of the six-coordinate 19e⁻ species. Provided $\Delta S_{11} \approx 0$, the


J. Am. Chem. Soc. 1981, 103, 6089-6092.
(52) Meyer, T. J.; Caspar, J. V. Chem. Rev. 1985, 85, 187-218.
(53) Scott, S. L.; Espenson, J. H.; Zhu, Z. J. Am. Chem. Soc. 1993, 115, 1789-1797

⁽⁵⁰⁾ Meckstroth, W. K.; Walters, R. T.; Waltz, W. L.; Wojcicki, A.; Dorfman, L. M. J. Am. Chem. Soc. 1982, 104, 1842-1846.

⁽⁵¹⁾ Wegman, R. W.; Olsen, R. J.; Gard, D. R.; Faulkner, L. R.; Brown, T. L.

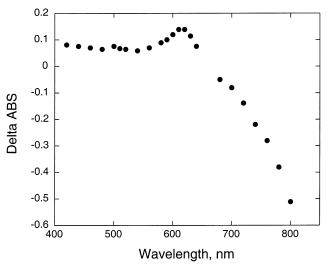
O'Toole, T. R.; Sullivan, B. P.; Meyer, T. J. J. Am. Chem. Soc. 1989, 111, (49) 5699-5706.

Scheme 2. Photolysis of $[Re(dmb)(CO)_3]_2$ and Recombination of the Radicals

equilibrium constant (K_{11}) may be estimated from $\Delta H_{11} \approx \Delta H^{\ddagger}/2$, $K_{11} \approx \exp(-\Delta H^{\ddagger}/2RT) = 10^{-4}$.

$$\operatorname{Re}(\operatorname{dmb}^{\bullet})(\operatorname{CO})_{3}(\operatorname{THF}) \rightleftharpoons \operatorname{Re}^{\bullet}(\operatorname{dmb})(\operatorname{CO})_{3}(\operatorname{THF})$$
 (11)

 $\operatorname{Re}^{\bullet}(\operatorname{dmb})(\operatorname{CO})_{3}(\operatorname{THF}) \rightarrow \operatorname{Re}^{\bullet}(\operatorname{dmb})(\operatorname{CO})_{3} + \operatorname{THF}$ (12)


$$2\text{Re}^{\bullet}(\text{dmb})(\text{CO})_{3} \rightarrow [\text{Re}(\text{dmb})(\text{CO})_{3}]_{2}$$
(13)

$$k_{\rm d} = K_{11}^2 k_{13} = 40 \,{\rm M}^{-1} \,{\rm s}^{-1}$$
 (14)

Thus, the extremely slow dimerization of Re(dmb)(CO)₃(THF) may arise from unfavorable equilibrium K_{11} (eq 11). Assuming eq 14, then the dimerization rate constant (k_{13}) by the metal radical (eq 13) is $\approx 4 \times 10^9$ M⁻¹ s⁻¹, consistent with other metal 17e⁻ systems (Scheme 2).

Flash photolysis experiments on $[\text{Re}(\text{dmb})(\text{CO})_3]_2$ in THF were carried out using excitation with the second or third harmonic of an Nd:YAG laser. We did not see formation of a long-lived Re(dmb)(CO)₃(THF) monomer, consistent with the low quantum yield of the homolysis determined in the CW photolysis. Figure 4 shows the transient absorption spectrum of a short-lived species observed after excitation of a degassed sample containing 0.07 mM [Re(dmb)(CO)₃]₂ in THF at 15 °C. The decay of the signal is first order with $k_{obs} = 2.1 \times 10^7 \text{ s}^{-1}$. An experiment under 1 atm of CO gave identical results, indicating that CO dissociation does not occur on the nanosecond to millisecond time scale. The transient spectrum does not resemble that of [Re(dmb)(CO)₃]⁻; therefore, heterolysis to form [Re(dmb)(CO)₃]⁺ and [Re(dmb)(CO)₃]⁻ does not take place at this time scale.

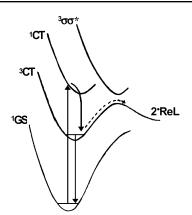
Morse and Wrighton⁵⁴ have assigned the lowest energy absorption in (phen)(CO)₃Re-Re(CO)₅ to a $\sigma_{MM} \rightarrow \pi^*_{phen}$ charge-transfer transition that transfers change from the metalmetal bonding orbital $(d_{z^2}$ orbital on the Re centers) to an antibonding orbital on the phen ligand. The transition is observed to be solvent sensitive (572 nm in isooctane, 541 nm in benzene, 578 nm in CH₂Cl₂, and 500 nm in acetone). The $d\pi_{MM} \rightarrow \pi^*_{phen}$ transition, normally indicated as the MLCT transition, occurs at higher energy. The initially formed ¹CT state ($^{1}\sigma_{MM} - \pi^{*}_{phen}$) internally converts to the ³CT (${}^{3}\sigma_{MM} - \pi^{*}_{phen}$). Homolytic bond cleavage of the Re-Re bond then takes place. The quantum yield of ~ 0.17 is independent of the excitation wavelength from 313 to 633 nm at 25 °C. Morse et al. postulated that the depopulation of the $\sigma_{\rm MM}$ -orbital causes the Re-Re bond to break. Meyer and Caspar,⁵² however, argued that the initially formed ¹CT state rapidly undergoes internal conversion to the nonbonding ${}^{3}\sigma_{MM} - \sigma_{MM}^{*}$ state, which leads to rapid homolysis of the Re-Re bond. Stufkens^{55,56} later pointed out that the

Figure 4. Transient absorption spectrum of a short-lived excited-state species observed after excitation (532 nm) of a degassed sample containing 0.07 mM [Re(dmb)(CO)₃]₂ in THF at 15 °C.

assignment of the lowest-energy absorption of metal-metal bonded complexes may be a mixture of $\sigma_{MM} \rightarrow \pi^*_{phen}$ and $d\pi_{MM}$ $\rightarrow \pi^*_{\text{phen}}$ due to the similar energies of the σ_{MM} - and the $d\pi_{\text{MM}}$ orbitals.^{57,58} Rapid internal conversion after excitation yields the ${}^{3}\sigma_{MM} - \pi^{*}_{phen}$ CT state. Stufkens^{57,58} attributes the photochemistry to this state. Small changes in the relative energies of the various orbitals are expected to lead to significant changes in the photochemistry and photophysics of the Re-Re dimers. If the reactive state is the ${}^{3}\sigma_{MM} - \sigma^{*}{}_{MM}$ state and the surface crossing from the ${}^{3}\sigma_{MM} - \pi^{*}_{phen}$ state is energetically unfavorable, only a small fraction of the excited molecules will cross to the ${}^{3}\sigma_{MM} - \sigma^{*}_{MM}$ state (Figure 5). However, if the crossing becomes barrierless, then the fraction would approach unity. To understand the photophysics and photochemistry of [Re(dmb)(CO)₃]₂, B3LYP hybrid DFT and fully ab initio RHF/ MP2 calculations on [Re(dmb)(CO)₃]₂ and the homolysis product are currently under investigation.⁵⁹

Reaction of Re(dmb)(CO)₃S with CO₂. [Re(dmb)(CO)₃]₂ does not react with CO₂ without irradiation. When a THF solution containing 0.05 mM [Re(dmb)(CO)₃]₂ and 0.8 atm of CO₂ was photolyzed by a 150 W Xe lamp with a 380 nm low pass filter for 20 s, only 45% of the [Re(dmb)(CO)₃]₂ was recovered. The rest of Re(dmb)(CO)₃(THF) reacts with CO₂, and the observed rate is ~0.003 s⁻¹. Thus, CO₂ binding of Re(dmb)(CO)₃S competes with dimerization. Since the product of CO₂ binding undergoes photodecomposition (see next section), further kinetic study of CO₂ binding to Re(dmb)(CO)₃S was not carried out in THF.

Sullivan et al. reported their preliminary study of photolysis of $[\text{Re(bpy)(CO)}_3]_2$ in CO₂-saturated DMSO to yield some CO and Re(bpy)(CO)₃(OCO₂H).¹⁴ They proposed that the photochemical reaction involves initial Re–Re bond cleavage, followed by entry of the monomers into the CO₂ reduction cycle. To identify intermediates in the reaction of Re(dmb)(CO)₃S with ¹³CO₂, a DMF suspension containing 3–16 mM [Re(dmb)-

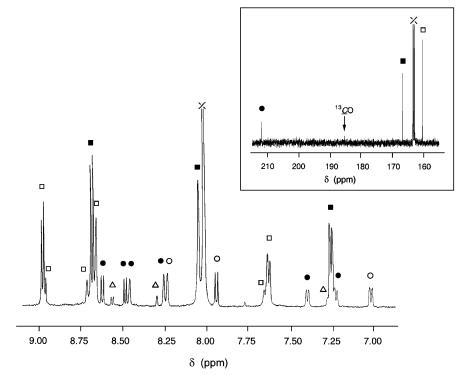

⁽⁵⁵⁾ Stufkens, D. J. Comments Inorg. Chem. 1992, 13, 359-385.

⁽⁵⁶⁾ Stufkens, D. J.; Vlcek, A. Coord. Chem. Rev. 1998, 177, 127-179.

⁽⁵⁷⁾ Kokkes, M. W.; Snoeck, T. L.; Stufkens, D. J.; Oksam, A.; Cristophersen, M.; Stam, C. H. J. Mol. Struct. 1985, 131, 11.

⁽⁵⁸⁾ Larson, L. J.; Oskam, A.; Zink, J. I. Inorg. Chem. 1991, 30, 42.

⁽⁵⁹⁾ The detailed results will be published in a forthcoming paper (with J. T. Muckerman, BNL).


Figure 5. Schematic potential energy-coordinate diagram for photolysis of [Re(dmb)(CO)₃]₂.

(CO)₃]₂ was monitored by ¹H NMR, ¹³C NMR, FTIR, and GC. The ¹H NMR spectrum after a 2 min photolysis is shown in Figure 6 along with the ¹³C NMR spectrum (insert). A carboxylate-bridged Re dimer [Re(dmb)(CO)₃]₂(CO₂) appears at δ 8.63 (2H, d), 8.49 (2H,d), 8.47 (2H,s), 8.26 (2H, s), 7.42 (2H, d), and 7.26 (2H, d), together with the starting material, $[\text{Re}(\text{dmb})(\text{CO})_3]_2$, at δ 8.24 (2H, s), 7.96 (2H, d), and 7.04 (2H, d) as shown in Figure 6, Table 3, and eq 15. Furthermore, a carbonate-bridged Re dimer [Re(dmb)(CO)₃]₂(OCO₂) was observed at δ 8.69 (4H, d), 8.06 (4H, s), and 7.28 (4H, d), overlapping with signals of Re(dmb)(CO)₃(OC(O)OH) and [Re(dmb)(CO)₃]₂(CO₂). A ¹³C NMR spectrum of the same solution shows three signals at δ 212.1, 166.7, and 160.4, which are assigned to $[\text{Re}(\text{dmb})(\text{CO})_3]_2(^{13}\text{CO}_2)$, $[\text{Re}(\text{dmb})(\text{CO})_3]_2$ - $(O^{13}CO_2)$, and Re(dmb)(CO)₃ $(O^{13}C(O)OH)$, respectively. In addition, there is a small signal at δ 185.4 that is due to ¹³CO produced. The above assignments of [Re(dmb)(CO)₃]₂(OCO₂)

and $Re(dmb)(CO)_3(OC(O)OH)$ were consistent with those reported previously.^{24,25}

$$2\text{Re}(\text{dmb})(\text{CO})_3\text{S} + \text{CO}_2 \rightarrow [\text{Re}(\text{dmb})(\text{CO})_3]_2(\text{CO}_2) + 2\text{S}_{(15)}$$

When the NMR tube containing the above mixture was further irradiated, $[Re(dmb)(CO)_3]_2$ and $[Re(dmb)(CO)_3]_2(CO_2)$ were completely converted to Re(dmb)(CO)₃(OC(O)OH) and $[Re(dmb)(CO)_3]_2(OCO_2)$ with generation of CO in 25–50% yield based on [Re]. The CO yield increases with Re concentration consistent with a highly reactive nature of the Re(dmb)-(CO)₃(DMF) species that can react with a trace amount of impurities in DMF. H₂ was not detected. The total yield of $Re(dmb)(CO)_3(OC(O)OH)$ and $[Re(dmb)(CO)_3]_2(OCO_2)$ was 60-100% based on [Re]. The ratio between both the two final products, Re(dmb)(CO)₃(OC(O)OH) and [Re(dmb)(CO)₃]₂-(CO₃), depends on Re and H₂O concentrations. An increase in the concentration of [Re(dmb)(CO)₃]₂ increases the yield of [Re(dmb)(CO)₃]₂(OCO₂). Furthermore, on standing, Re(dmb)- $(CO)_3(OC(O)OH)$ gradually converts to $[Re(dmb)(CO)_3]_2$ -(OCO₂), which precipitates. Although Hawecker et al.⁵ reported formation of the formate complex Re(bpy)(CO)₃(OCHO) in their photocatalytic CO_2 reduction with Re(bpy)(CO)₃Cl, we did not observe any formation of Re(dmb)(CO)₃(OCHO) in our system. The difference may arise from use of TEOA as an electron donor in their system. Interestingly, they did not report formation of $Re(bpy)(CO)_3(OC(O)OH)$ or $[Re(bpy)(CO)_3]_2(OCO_2)$ complexes. Furthermore, while incorporation of ¹³CO to the rhenium complexes was reported,⁵ we did not observe any enhancement of the bound ¹³CO signals. The predicted mononuclear CO₂ adduct,¹⁴ Re(dmb)(CO)₃(CO₂) in eq 6, has not been observed in our experiments. Re(dmb)(CO)₃(COOH) was observed as a minor product only when wet DMF was used as a solvent in NMR experiments.

Figure 6. ¹H NMR spectrum of reaction products of Re(dmb)(CO)₃(DMF) with CO₂ in d_7 -DMF: (\bullet) [Re(dmb)(CO)₃]₂(CO₂), (\blacksquare) [Re(dmb)(CO)₃]₂-(OCO₂), (\bigcirc) [Re(dmb)(CO)₃]₂, (\square) Re(dmb)(CO)₃(OC(O)OH), and (\triangle) dmb.

Christensen et al. reported²² an in situ IR study of electrochemical reduction of Re(dmb)(CO)₃Cl in CH₃CN in the presence of CO_2 . They concluded that direct attack of CO_2 on Re(dmb)(CO)₃Cl led to formation of Re(dmb)(CO)₃(COOH) ($\nu_{\rm CO}$: 2010, 1902, and 1878 cm⁻¹), which can undergo further reduction to $[\text{Re}(\text{dmb})(\text{CO})_3(\text{COOH})]^-$ (ν_{CO} : 1997 and 1860 cm^{-1}), in the absence of water. Their assignment of Re(dmb)-(CO)₃(COOH) in their experiments is not consistent with either our data (in DMF: 2005, 1895 cm⁻¹; KBr: 2008, 1886 cm⁻¹) or the data by Gibson et al.²⁴ (DRIFT, KCl: 2012, 1916 sh, 1892 cm⁻¹). We did not observe the formation of Re(dmb)-(CO)₃(COOH) as a major product in our IR and NMR study in DMF. It is very difficult to identify the species produced during bulk electrolysis only from ν_{CO} . For example, we note that IR (ν_{CO}) spectra of Re(dmb)(CO)₃(OCHO), Re(dmb)(CO)₃-(OC(O)OH), and Re(dmb)(CO)₃Cl are almost identical in DMF. Considering the fact that loss of Cl⁻ from [Re(dmb)(CO)₃Cl]⁻ is slow and that reaction of CO2 with the one-electron-reduced species is very slow, we believe it is possible that no CO₂containing species coexist in their solution at the applied potential used.

Reactions of [Re(dmb)(CO)_3]_2(CO_2). The reactivity of [Re(dmb)(CO)_3]_2(CO_2), prepared by the reaction of Re(dmb)-(CO)_3COOH with Re(dmb)(CO)_3OH,²⁴ was monitored in DMF by NMR, IR, and UV-vis spectroscopy. [Re(dmb)(CO)_3]_2(CO_2) is stable in DMF at ambient temperature in the absence of CO₂: a 1mM solution of [Re(dmb)(CO)_3]_2(CO_2) in d_7 -DMF decomposes very slowly under Ar to Re(CO)_3(OC(O)OH) in 30% yield based on [Re] along with [Re(dmb)(CO)_3S]^+ (5%) and free dmb (11%) over a 6 month period.

Gibson et al. reported that, under CO₂ atmosphere, [Re(dmb)-(CO)₃]₂(CO₂) is readily converted to Re(dmb)(CO)₃OC(O)OH in wet DMF or DMSO.²⁵ The formation of CO was not described in their paper. Our NMR experiments using a d_7 -DMF suspension of [Re(dmb)(CO)₃]₂(CO₂) with ¹³CO₂ showed the formation of Re(dmb)(CO)₃(OC(O)OH) and [Re(dmb)-(CO)₃]₂(OCO₂) with a combined yield of ≈90% and CO ≈45% based on [Re] in a few hours.

To obtain detailed insight into the reactivity of [Re(dmb)-(CO)₃]₂(CO₂) with CO₂ in DMF, the decay of a 1.8×10^{-4} M [Re(dmb)(CO)₃]₂(CO₂) solution was monitored as a function of CO₂ (0.1–0.2 M) at 25 °C by UV–vis spectroscopy. The CO₂ solubility, [CO₂] = 0.197 M under 1 atm of CO₂, was taken from published data.⁶⁰ The disappearance of [Re(dmb)-(CO)₃]₂(CO₂) is first order in [CO₂]. The bimolecular rate constant, k_{16} , is 9.7 × 10⁻⁴ M⁻¹ s⁻¹ (Figure S3), consistent with eq 16.

$$[\operatorname{Re}(\operatorname{dmb})(\operatorname{CO})_3]_2(\operatorname{CO}_2) + \operatorname{CO}_2 \rightarrow \\ [\operatorname{Re}(\operatorname{dmb})(\operatorname{CO})_3]_2(\operatorname{OCO}_2) + \operatorname{CO} (16)$$

$$[\operatorname{Re}(\operatorname{dmb})(\operatorname{CO})_3]_2(\operatorname{CO}_2) + \operatorname{CO}_2 + \operatorname{H}^+ + \operatorname{S} \rightarrow$$
$$\operatorname{Re}(\operatorname{dmb})(\operatorname{CO})_3(\operatorname{OC}(\operatorname{O})\operatorname{OH}) + [\operatorname{Re}(\operatorname{dmb})(\operatorname{CO})_3\operatorname{S}]^+ + \operatorname{CO}$$
(17)

 $[\text{Re}(\text{dmb})(\text{CO})_3]_2(\text{CO}_2) + \text{CO}_2 + \text{H}_2\text{O} \rightarrow \\ \text{Re}(\text{dmb})(\text{CO})_3(\text{OC}(\text{O})\text{OH}) + \text{Re}(\text{dmb})(\text{CO})_3(\text{COOH}) (18)$

If H_2O is present, formation of $Re(dmb)(CO)_3(OC(O)OH)$ is possible (eqs 17 and 18). Unfortunately studies with small amounts of added water did not yield consistent results for reactions 16-18.

While the above thermal reactions took place in a few hours, the CW photolysis of 5-6 mM [Re(dmb)(CO)₃]₂(CO₂) under CO_2 produces [Re(dmb)(CO)_3]_2(OCO_2) (and Re(dmb)(CO)_3-(OC(O)OH)) in a few minutes along with CO (23-43%) yield based on [Re]). The decay of a 1.9×10^{-4} M [Re(dmb)(CO)₃]₂- (CO_2) solution was monitored as a function of CO_2 (0.07-0.2 M) at 25 \pm 2 °C under irradiation (λ > 380 nm, 150 W Xe lamp). The bimolecular rate constant under irradiation is $5.1 \times$ 10^{-2} M⁻¹ s⁻¹ (Figure S4), which is about 50 times larger than that of the thermal reaction. Although the photoinduced reaction should be dependent on light-intensity, excitation wavelength, sensitizer/catalyst concentration, and so forth, our results show at least that the reported⁵ turnover frequency of photochemical CO generation of ~8 hr⁻¹ is feasible with a $[Re(dmb)(CO)_3]_2$ -(CO₂) intermediate. Photolysis (<5min) of [Re(dmb)(CO)₃]₂-(CO₂) under Ar produces [Re(dmb)(CO)₃]₂ as the main product in 11-15% yield based on [Re] with a small amount of two unknown species. No CO generation was observed, indicating that CO was not released simply from [Re(dmb)(CO)₃]₂(CO₂) upon photolysis.

Roles of Re(dmb)(CO)₃(COOH) and Re(dmb)₃(CO)-(CHO) in Photochemical CO₂. Gibson et al. prepared Re(dmb)(CO)₃(COOH) by the reaction of Re(dmb)(CO)₄(OTf) with aqueous KOH.²⁴ They reported that the μ_2 - η^2 -CO₂-bridged complex, [Re(dmb)(CO)₃]₂(CO₂), was produced from an acetone, DMF, or DMSO solution of Re(dmb)(CO)₃(COOH) on standing under room light. Although the formation of [Re(dmb)-(CO)₃]₂(CO₂) was attributed to partial decarboxylation of Re(dmb)(CO)₃(COOH) to Re(dmb)(CO)₃(H) followed by reaction with another molecule of Re(dmb)(CO)₃(COOH) and liberation of H₂ (and presumably CO₂),²⁴ their recent publication indicates that no H₂ is detected by GC.²¹

We observed Re(dmb)(CO)₃(COOH) as a very minor product together with [Re(dmb)(CO)₃]₂(CO₂), [Re(dmb)(CO)₃]₂(OCO₂), and Re(dmb)(CO)₃(OC(O)OH) in the reaction of Re(dmb)-(CO)₃(DMF) with CO₂ only when DMF was slightly wet (0.1 wt % of H₂O added). Therefore, we investigated the reactivity of Re(dmb)(CO)₃(COOH) in DMF. The reaction of 6 mM Re(dmb)(CO)₃(COOH) in *d*₇-DMF under Ar was monitored by ¹H NMR. The solution was kept in the dark at 5 °C except during NMR measurements. With a loss of Re(dmb)(CO)₃-(COOH), an increase of [Re(dmb)(CO)₃]₂(CO₂) and water was observed. The final products and yields in this experiment were [Re(dmb)(CO)₃]₂CO₂ (60%), Re(dmb)(CO)₃(OC(O)OH) (30%), CO (66%), and H₂O (80%) based on [Re] (Figure S5, Supporting Information). No H₂ was observed by ¹H NMR or GC, consistent with Gibson's recent results²¹ and eq 19.

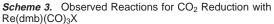
$$2\text{Re}(\text{dmb})(\text{CO})_3(\text{COOH}) \rightarrow \\ [\text{Re}(\text{dmb})(\text{CO})_3]_2(\text{CO}_2) + \text{CO} + \text{H}_2\text{O} (19)$$

Thermal decomposition of metallocarboxylic acids to form μ_2 - η^2 -CO₂-bridged complexes has been observed for Pt(C₆H₅)-(PEt₃)₂(COOH) in the solid state at ca. 100 °C to give the corresponding dimeric Pt complex with almost quantitative

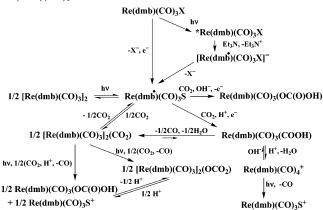
⁽⁶⁰⁾ Gennaro, A.; Isse, A. A.; Vaianello, E. J. Electroanal. Chem. 1990, 289, 203–215.

formation of CO.⁶¹ Pt(C₆H₅)(PEt₃)₂(COOH) itself does not convert to $[Pt(C_6H_5)(PEt_3)_2]_2(CO_2)$ in solution, however, it reacts with Pt(C₆H₅)(PEt₃)₂(OH) to give the dimeric species.

Gibson et al. recently suggested that Re(dmb)(CO)₃COOH may play important roles involving its ionization to Re(dmb)- $(CO)_4^+$ and OH^- or proton transfer to highly basic species in the photochemical reduction of CO₂ to CO and formate as shown in Scheme 1.21,62 Transient IR studies indicate that $Re(diimine)(CO)_4^+$ produces CO and $Re(diimine)(CO)_3(S)^+$ by photoinduced ligand-substitution reaction in 10 μ s after laser excitation.^{26,46} Therefore, CO formation does not need to proceed through the proposed $\operatorname{Re}(\eta^1-\operatorname{dmb})(\operatorname{CO})_4(\operatorname{OH})$ and $\operatorname{Re}(\eta^1-\operatorname{CO})_4(\operatorname{OH})$ $dmb)(CO)_4(OC(O)OH)$ intermediates. We observed that small amounts of Re(dmb)(CO)₄⁺ (less than 10%) form by the acid/ base equilibrium when Re(dmb)(CO)₃(COOH) was dissolved in wet DMF under CO2. When TEOA-containing DMF was used under CO₂, no Re(dmb)(CO)₄⁺ was detected by IR, consistent with the basic nature of the solvent. The formation of Re(dmb)(CO)₄⁺ in TEOA-containing DMF and DMSO solutions is unfavorable. However, the acidity of the solution may change once oxidation of TEOA to TEOAH+ (eqs 20-22)^{63,64} occurs by photochemical reactions. Further studies using a water-soluble Re-COOH are underway.


*Re(dmb)(CO)₃Cl + TEOA
$$\rightarrow$$

[Re(dmb)(CO)₃Cl]⁻ + TEOA⁺ (20)


$$TEOA^{+} + TEOA \rightarrow$$
$$TEOAH^{+} + (HOCH_2CH_2)_2N(C^{\bullet}HCH_2OH) (21)$$

$$(\text{HOCH}_{2}\text{CH}_{2})_{2}\text{N}(\text{C}^{+}\text{HCH}_{2}\text{OH}) \rightarrow (\text{HOCH}_{2}\text{CH}_{2})_{2}\text{N}^{+} = \text{CHCH}_{2}\text{OH} + \text{e}^{-} (22)$$

Neither our experiments of Re(dmb)(CO)₃S with CO₂ nor our photochemical CO_2 reduction (irradiation for 0.5 h by a 150 W lamp) with Re(dmb)(CO)₃Cl and TEA in dry DMF produces Re(dmb)(CO)₃(OCHO). The formation of Re-OCHO has been reported in photochemical CO₂ reduction.^{4,5,10,12} Such a difference may arise from the presence of TEOA or TEA as an electron donor in the photochemical system. An important role for a formyl complex Re(dmb)(CO)₃(CHO) has been assigned in the formation of Re-OCHO in photochemical CO₂ reduction (Scheme 1).62 How is the 4e⁻ reduced formyl produced from CO₂ by a photoinduced electron-transfer reaction? While the proton-assisted 4e⁻ reduction step occurs at a much more favorable potential than that of the 2e⁻ reduction step (i.e., CO_2 to CO or formate), there is no precedent for such a reaction in homogeneous systems. We rather prefer involvement of an Re-H species. Re(diimine)(CO)₃(OCHO) can be prepared by CO₂ insertion into the Re-H bond of Re(diimine)-(CO)₃H.²⁹ While Re(diimine)(CO)₃H is quite photoactive, this species can be generated from Re(diimine)(CO)₃S with a proton, followed by reduction. Alternatively, Re(diimine)(CO)₃S can

(64) Chan, S.-F.; Chou, M.; Creutz, C.; Matsubara, T.; Sutin, N. J. Am. Chem. Soc. 1981, 103, 369.

be reduced by a photoproduced $\text{Re}(\text{dimine})(\text{CO})_3\text{Cl}^-$ to form $\text{Re}(\text{dimine})(\text{CO})_3^-$ (see Table S1 for reduction potential data in Supporting Information), which could then react with a proton to form Re-H. Hydrogen abstraction from TEA or TEOA by $\text{Re}(\text{dimine})(\text{CO})_3\text{S}$ to form $\text{Re}(\text{dimine})(\text{CO})_3\text{H}$ may also occur.

Conclusions

All the reactions observed are summarized in Scheme 3 together with other known reactions.^{14,15,24,25} Re(dmb)(CO)₃S, prepared either by reductive quenching of the excited states of fac-Re(dmb)(CO)₃X or by homolysis of [Re(dmb)(CO)₃]₂, can react with CO2 to form the dimeric intermediate with the Re-C(O)O-Re moiety. However, the reaction of Re(dmb)(CO)₃S with CO₂ is extremely slow ($k_{obs} \approx 0.003 \text{ s}^{-1}$) in THF under ~ 0.8 atm of CO₂. This reaction is much slower than those of $Co^{I}L^{+}$ and $Ni^{I}L^{+}$ (L = macrocycle) studied previously.^{65–69} For example, $k_{CO_2} = 1.1 \times 10^6$, 1.7×10^8 , and $3.7 \times 10^8 \text{ M}^{-1}$ s^{-1} in CH₃CN values are reported for Co^IL⁺, where L = 3,5,7,7,10,12,14,14-octamethyl-1,4,8,11-tetraazacyclotetra-4,11dine, 5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetra-4,11-dine, and 5,12-dimethyl-1,4,8,11-tetraazacyclotetra-4,11dine, respectively.⁶⁶ For Ni^IL⁺ (L = 1,4,8,11-tetraazacyclotetrane), $k_{CO_2} = 3.3 \times 10^7 \text{ M}^{-1} \text{ s}^{-1}$ in H₂O was reported.⁶⁹ However, in these reduced metal complexes, the extra electron density resides on the metal centers as found in a XANES study.70-72 The cobalt(I) complexes activate CO2 by binding through the electrophilic carbon, with oxygen atoms bending back in an η^1 -CO₂ configuration and transferring two electrons from Co d_z^2 to the bound CO₂ yielding a Co(III) carboxylate.⁷⁰ In contrast to the cobalt case, $[Re(dmb)(CO)_3]_2(CO_2)$ has one Re(I) center coordinated to CO₂ through carbon and another

- (65) Creutz, C.; Schwarz, H. A.; Wishart, J. F.; Fujita, E.; Sutin, N. J. Am. Chem. Soc. 1991, 113, 3361–3371.
- (66) Ogata, T.; Yanagida, S.; Brunschwig, B. S.; Fujita, E. J. Am. Chem. Soc. 1995, 117, 6708-6716.
 (7) Eric F. Construction, Construction, Nuclear Device Construction, Con
- (67) Fujita, E.; Creutz, C.; Sutin, N.; Szalda, D. J. J. Am. Chem. Soc. 1991, 113, 343-353.
 (68) Fujita, E.; Brunschwig, B. S.; Cabelli, D.; Renner, M. W.; Furenlid, L. R.;
- (68) Fujita, E., Brunschwig, B. S., Cabein, D., Renner, M. W., Furennid, L. R., Ogata, T.; Wada, Y.; Yanagida, S. Photochemical carbon dioxide reduction with metal complexes: Differences between cobalt and nickel macrocycles; Elsevier: Amsterdam, 1998.
- (69) Kelly, C. A.; Mulazzani, Q. G.; Venturi, M.; Blinn, E. L.; Rodgers, M. A. J. Am. Chem. Soc. 1995, 117, 4911–4919.
- (70) Fujita, E.; Furenlid, L. R.; Renner, M. W. J. Am. Chem. Soc. 1997, 119, 4549-4550.
 (71) Furenlid, L. R.; Renner, M. W.; Szalda, D. J.; Fujita, E. J. Am. Chem. Soc.
- (72) Furenlid, L. R.; Renner, M. W.; Fujita, E. Physica B 1995, 208–209, 739– 742.

⁽⁶¹⁾ Bennett, M. A.; Robertson, G. B.; Rokicki, A.; Wickramasingle, W. A. J. Am. Chem. Soc. 1988, 110, 7098–7105.

⁽⁶²⁾ Gibson, D. H.; He, H. Y. J. Chem. Soc., Chem. Commun. 2001, 2082– 2083.

⁽⁶³⁾ De Laive, P. J.; Whitten, D. G.; Giannotti, C. *Inorganic Compounds with Unusual Properties – II*; American Chemical Society: Washington, DC, 1979; Vol. 173.

coordinated through one of the oxygen atoms with a μ_2 - η^2 -CO₂ configuration, where each dmb ligand is providing an electron to the bound CO₂ forming a carboxylate species.

In the one-electron-reduced species $\text{Re}(\text{dmb})(\text{CO})_3\text{S}$, the extra electron is located on the ligand and the equilibrium constant between the ligand- and metal-centered radicals ($\text{Re}(\text{dmb}^{\bullet})$ -($\text{CO})_3\text{S}$ and $\text{Re}^{\bullet}(\text{dmb})(\text{CO})_3$) is 10^{-4} . Thus the dimerization reaction of the ligand-centered radical via the metal radical is very slow compared to those of typical metal radicals of organometallic complexes. The reaction with CO_2 is also slow, since the binding of CO_2 requires an electron-rich metal center(s).

 $[\text{Re}(\text{dmb})(\text{CO})_3]_2$ is unreactive toward CO_2 and [Re(dmb)-(CO)₃](CO₂) only forms after the photodissociation of the Re dimer to Re(dmb[•])(CO)₃S. In all the experiments we conducted with $[Re(dmb)(CO)_3]_2$ and CO_2 , we observed the formation of CO (a 25-50% yield based on [Re]) and final Re species (i.e., [Re(dmb)(CO)₃]₂(OCO₂) and Re(dmb)(CO)₃(OC(O)OH)). In all the experiments we performed with $[Re(dmb)(CO)_3]_2(CO_2)$ under CO₂, the formation of CO with similar yields and the same final products were confirmed. These results support the involvement of [Re(dmb)(CO)₃]₂(CO₂) as a key intermediate in the reaction of $[Re(dmb)(CO)_3]_2$ with CO₂. When ¹³CO₂ is used, the final NMR spectrum indicates ${}^{13}C$ signals for only $Re(dmb)(CO)_3(O^{13}C(O)OH)$, $[Re(dmb)(CO)_3]_2(O^{13}CO_2)$, and 13 CO. Thus the reaction of [Re(dmb)(CO)₃]₂(CO₂) with 13 CO₂ takes place on the Re-CO₂-Re moiety without any exchange with Re-bound CO. This result is quite different from that obtained by Hawecker et al.5

In photocatalytic systems, $Re(dmb)(CO)_3S$, the one-electronreduced species of $Re(dmb)(CO)_3Cl$ formed by loss of Cl^- , would be expected to act as a catalyst in the reduction of CO_2 to CO by the formation of $[Re(dmb)(CO)_3]_2(CO_2)$ (and Re(dmb)(CO)₃COOH as a minor species). We believe that the route involving [Re(dmb)(CO)₃]₂(CO₂) plays the major role. The presence of Cl⁻, TEOA (or TEA), and water suppresses the formation of insoluble [Re(dmb)(CO)₃](OCO₂) and allows Re(dmb)(CO)₃Cl to reform. The liberation of CO via reaction of Re(dmb)(CO)₃(COOH) with a proton to form Re(dmb)(CO)₄⁺ may be suppressed in the early stages of photochemical reactions; however, it may become an important route once significant amounts of TEOAH⁺ or TEAH⁺ are produced. Although formation of metal–formate complexes was reported in photochemical CO₂ reduction,^{4,5} we did not observe such complexes in our photochemical CO₂ reduction with Re(dmb)-(CO)₃Cl and TEA/DMF.

Acknowledgment. We thank Dr. Norman Sutin, Dr. Carol Creutz, Prof. Osamu Ishitani, Dr. Kazuhide Koike, and Prof. Kazuteru Shinozaki for valuable discussions. This work was performed at Brookhaven National Laboratory, funded under Contract DE-AC02-98CH10886 with the U.S. Department of Energy and supported by its Division of Chemical Sciences, Office of Basic Energy Sciences. S.K. acknowledges financial support from the Mombu-Kagaku-sho, Japan, as a fellow for research-in-abroad.

Supporting Information Available: Table of the reduction potentials of Re complexes and figures of UV—vis spectra of Re(dmb)(CO)₃(OTf), [Re(dmb)(CO)₃]₂, [Re(dmb)(CO)₃]⁻, and [Re(dmb)(CO)₃]₂ in various solvents; plots of pseudo-first-order rate constant for decomposition of [Re(dmb)(CO)₃]₂(CO₂) versus [CO₂] in the dark and under continuous irradiation; and plot of the concentrations of various species versus time for the reactions of Re(dmb)(CO)₃(COOH) in DMF. This material is available free of charge via the Internet at http://pubs.acs.org.

JA035960A